Presentation Name: Orthogonal Low Rank Tensor Approximation
Presenter: Prof. Moody Chu
Date: 2014-03-14
Location: 光华东楼1801
Abstract:

 With the notable exceptions of two cases — that tensors of order 2, namely, matrices, always have best approximations of arbitrary low ranks and that tensors of any order always have the best rank-one approximation, it is known that high-order tensors may fail to have best low rank approximations. When the condition of orthogonality is imposed, even under the modest assumption that only one set of components in the decomposed rank-one tensors is required to be mutually perpendicular, the situation is changed completely — orthogonal low rank approximations always exist. The purpose of this paper is to discuss the best low rank approximation subject to orthogonality. The conventional high-order power method is modified to address the orthogonality via the polar decomposition. Algebraic geometry technique is employed to show that for almost all tensors the orthogonal alternating least squares method converges globally.

Annual Speech Directory➡️: No.21

220 Handan Rd., Yangpu District, Shanghai ( 200433 )| Operator:+86 21 65642222

Copyright © 2016 FUDAN University. All Rights Reserved

杏悦专业提供:杏悦等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流🙋🏿,杏悦欢迎您。 杏悦官网xml地图
杏悦 杏悦 杏悦 杏悦 杏悦 杏悦 杏悦 杏悦 杏悦 杏悦