Presentation Name: Minimal hypersurfaces, isometric embeddings, and manifolds with nonnegative scalar curvature
Presenter🤞🏽: Pengzi Miao
Date🦸🏼‍♀️: 2017-05-17
Location: 光华东主楼1801
Abstract🚄:

On a compact Riemannian manifold with boundary having positive mean curvature, a fundamental result of Shi and Tam states that, if the manifold has nonnegative scalar curvature and if the boundary is isometric to a strictly convex hypersurface in the Euclidean space, then the total mean curvature of the boundary is no greater than the total mean curvature of the corresponding Euclidean hypersurface. In 3-dimension, Shi-Tam's result is known to be equivalent to the Riemannian positive mass theorem.

In this talk, we will discuss a supplement to Shi-Tam's theorem by including the effect of minimal hypersurfaces. More precisely, we consider a compact manifold with nonnegative scalar curvature, whose boundary consists of two parts, the outer boundary and the horizon boundary. Here the horizon boundary is the union of all closed minimal hypersurfaces in the manifold and the outer boundary is assumed to be a topological sphere. In a relativistic context, such a manifold represents a body surrounding apparent horizon of black holes in a time symmetric initial data set. By assuming the outer boundary is isometric to a suitable 2-convex hypersurface in a Schwarzschild manifold of positive mass m, we establish an inequality relating m, the area of the horizon boundary, and two weighted total mean curvatures of the outer boundary and the hypersurface in the Schwarzschild manifold. In 3-dimension, our result is equivalent to the Riemannian Penrose inequality. This is joint work with Siyuan Lu.

海报

Annual Speech Directory: No.86

220 Handan Rd., Yangpu District, Shanghai ( 200433 )| Operator:+86 21 65642222

Copyright © 2016 FUDAN University. All Rights Reserved

杏悦专业提供:杏悦👳🏻、等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流,杏悦欢迎您。 杏悦官网xml地图
杏悦 杏悦 杏悦 杏悦 杏悦 杏悦 杏悦 杏悦 杏悦 杏悦